Abstract

An exponential interaction is constructed so that one-dimensional atoms and chains of atoms mimic the general behavior of their three-dimensional counterparts. Relative to the more commonly used soft-Coulomb interaction, the exponential greatly diminishes the computational time needed for calculating highly accurate quantities with the density matrix renormalization group. This is due to the use of a small matrix product operator and to exponentially vanishing tails. Furthermore, its more rapid decay closely mimics the screened Coulomb interaction in three dimensions. Choosing parameters to best match earlier calculations, we report results for the one dimensional hydrogen atom, uniform gas, and small atoms and molecules both exactly and in the local density approximation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.