Abstract

I discuss one dimensional maps as discrete time models of population dynamics from an extinction-versus-survival point of view by means of bifurcation theory. I extend this approach to a version of these population models that incorporates the dynamics of a single phenotypic trait subject to Darwinian evolution. This is done by proving a fundamental bifurcation theorem for the resulting two dimensional, discrete time model. This theorem describes the bifurcation that occurs when an extinction equilibrium destabilizes. Examples illustrate the application of the theorem. Included is a short summary of generalizations of this bifurcation theorem to the higher dimensional maps that arise when modeling the evolutionary dynamics of a structured population.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call