Abstract
Magnetic nanocomposite composed of attapulgite and Fe3O4 was synthesized by a simple and facile co-precipitation method. Its structure and morphology was verified using X-ray diffraction, transmission electron microscopy, scanning electron microscopy and Fourier transform infrared spectroscopy. Although the difficulty of forming uniform Fe3O4 on the attapulgite surface was discussed in detail in this study, one-dimensional magnetic nanorod with attapulgites as core and Fe3O4 as uniform shell was implemented for the first time using a cationic polymer surfactant, polyethylenimine. Polyethylenimine concentration, Fe3+/Fe2+ concentration and temperature were controlled to investigate the morphological evolutions of this nanocomposite. It was found that a uniform shell could be available with thickness tuning from 10 nm to 40 nm when Fe3+ concentration ranged from 0.01 mol/L to 0.03 mol/L meanwhile the polyethylenimine concentration was kept at 0.2 mg/mL and the temperature was kept at 60–80 °C. Finally, a possible mechanism for the formation of the Fe3O4 shell was suggested. The polyethylenimine on the surface of the attapulgites first adsorbed Fe3+/Fe2+ and then released under the action of alkali. It acted as a linker for the Fe3O4 nanoparticles nucleation in situ. The synthesized one-dimensional nanocomposites exhibit the superparamagnetism and fast response to an external magnetic field. The alignment of attapulgite-Fe3O4 one-dimensional nanocomposite along the external magnetic field was demonstrated. It provides promising candidates for building blocks and functional devices, which are low cost, non-toxic and eco-friendly, and opens the door for the application of attapulgite as one-dimensional nanomaterials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.