Abstract
In this short note, we construct mappings from one-dimensional integrable spinor BECs to matrix nonlinear Schr\"odinger equation, and solve the Bogoliubov equation of these systems. A map of spin-$n$ BEC is constructed from the $2^n$-dimensional spinor representation of irreducible tensor operators of $so(2n+1)$. Solutions of Bogoliubov equation are obtained with the aid of the theory of squared Jost functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.