Abstract

The physical phenomena of the ECR-microwave discharge are numerically studied by a one-dimensional hybrid model of the fluid electrons and particle ions. The present model includes both the ECR heating phenomena and the transport of ions along divergent axial magnetic field lines, microwave is considered as an energy flow attenuated by the thermal electron fluid. Individual ion motion is determined by ambipolar electric field and Monte-Carlo collisions together with the /spl nabla/B force. In the fluid description of electrons, electron motions are coupled to the ions through ambipolarity, and the energy transport is treated with the temperature equation. The simulation results for argon discharges show the two characteristic features of the measurements for the ion energy distribution: the low energy peak as found in energy analyzer measurements, and the high energy bump as found in LIF measurements. Also the strong effect of the distributed ionization on the ion energy distribution is observed.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.