Abstract

Understanding the detailed process of spontaneous formation of intrinsic defects and their ability to tune the electronic structures in functional materials has become a key prerequisite for their technological applications. Here, by using in situ scanning tunneling microscopy, we report the observation of one-dimensional Frenkel chain defects on the cleaved CsBi4Te6 surface due to the migration of Te atoms for the first time. Further scanning tunneling spectroscopy measurements clearly revealed a self-electron doping effect of the Frenkel chain defects, which could directly affect their thermoelectric and superconducting properties. The unique one-dimensional Frenkel tellurium atomic chain defect and its doping effect on the electronic structure observed here not only shed light on tuning the electric properties of a series of tellurides but also possess profound implications for enriching the microscopic details of defect chemistry and materials science.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.