Abstract

We present a dimensional regulating charge transfer strategy to achieve an enhanced electrochemiluminescence (ECL) by constructing a one-dimensional pyrene-based covalent organic framework (1D-COF). The dual-chain-like edge architecture in 1D-COF facilitates the stabilization of aromatic backbones, the enhancement of electronic conjugations, and the decrease of energy loss. The 1D-COF generates enhanced anodic (92.5-fold) and cathodic (3.2-fold) signals with tripropylamine (TPrA) and K2S2O8 as the anodic and cathodic coreactants, respectively, compared with 2D-COF. The anodic and cathodic ECL efficiencies of 1D-COF are 2.08- and 3.08-fold higher than those of 2D-COF, respectively. According to density functional theory (DFT), the rotational barrier energy (ΔE) of 1D-COF enhances sharply with the increase of dihedral angle, suggesting that the architecture in 1D-COF restrains the intramolecular spin of aromatic chains, which facilitates the decrease of nonradiative transitions and the enhancement of ECL. Furthermore, 1D-COF can be used to construct an ECL biosensor for sensitive detection of dopamine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.