Abstract
AbstractPrecise monitoring and diagnosis of epilepsy by manual analysis of EEG signals are challenging due to the low doctor‐to‐patient ratio, and shortage of medical resources. To automate this diagnosis in real‐time, EEG based Brain–Computer Interface (BCI) system with integration of artificial intelligence techniques will prove to be propitious. This work proposes an end‐to‐end, one‐dimensional atrous conv‐net‐based architecture for automatic epilepsy diagnosis using EEG signals with a conceptual framework of the EEG‐BCI system for routine monitoring and clinical use. The proposed architecture has a robust backbone of six blocks of atrous convolutional layers activated with exponential linear unit functions. The six blocks are followed by the addition of a long short‐term memory layer for automatic feature extraction and sequential EEG data analysis. The efficacy of the proposed architecture has been verified on three publicly available EEG datasets using various evaluation metrics, feature maps, test set evaluation, and ablation studies. An average training and validation accuracy of 96.16% and 90.80% has been achieved upon multiple runs for the three datasets. Ablation experiments indicate that the addition of each block contributed to increasing 17%–25% accuracy scores during the classification of epileptic and non‐epileptic EEG signals. The real‐time EEG‐BCI has been analyzed using weight optimization of the proposed architecture through the NVIDIA Tensor RT framework on a 40 GB DGX A100 NVIDIA workstation. The proposed architecture has generalized well in comparison with the existing techniques for the three EEG datasets and achieved a low training and validation loss with optimum evaluation metrics. This makes the proposed architecture suitable for future EEG‐BCI system deployment in the automatic diagnosis of epilepsy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.