Abstract

One-dimensional (1D) 8-hydroxyquinoline metal complex nanomaterials exhibit distinctive characteristics that differ from those of their bulk counterparts. Owing to their small size, shape anisotropy, unique structures, and novel properties, these organometallic 1D nanostructures are promising candidates for various devices. This review highlights current progress in the synthesis of 1D 8-hydroxyquinoline metal complex nanomaterials and summarizes their optoelectronic properties and applications. The mainly synthetic strategies are divided into three categories, which include vapor phase growth, solution phase growth, and self-assembly. Special attention is paid to the formation mechanisms and the control measures for 1D nanostructured 8-hydroxyquinoline metal complexes. Other new methods such as template-based synthesis and electrospinning are briefly described. Merits and shortcomings of each synthetic strategy are simply discussed. Then, a variety of optoelectronic properties including luminescence, field emission, charge transport, photoconductivity, and photo-switching properties are reviewed, and their applications in optoelectronic devices, field emission, and templates are also surveyed. In the end, concise conclusions are provided, and personal perspectives on future investigations of 1D 8-hydroxyquinoline metal complex nanomaterials are proposed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.