Abstract

MXenes possess the characteristics required for high-performance supercapacitors, such as high metallic conductivity and electrochemical activity, but their full potential remains unrealized owing to their tendency to self-restack when fabricated into an electrode. Designing an MXene interlayer with an effective intercalant has, therefore, become an important criterion to alleviate the restacking issue while also synergistically interact with MXene to further improve its electrochemical activity. This study reports the intercalation of 1D π-d conjugated coordination polymer (Ni-BTA) within the Ti3 C2 Tx nanosheet for the fabrication of a highly efficient supercapacitor electrode. Ni-BTA, which consists of a nickel center and 1,2,4,5-benzenetetramine (BTA) organic chain, is uniformly intercalated by direct synthesis on the abundant oxygen terminals on the Ti3 C2 Tx nanosheet surface. The intercalated Ni-BTA acts as an effective charge carrier transportation pathway through its 1D stretched delocalized π-d electrons while participating in pseudocapacitive activity with the Ni centers. As a result, the Ni-BTA/MXene film exhibits excellent rate performance and a gravimetric specific capacitance of 264.4Fg-1 at 5mVs-1 . This magnitude is retained up to 94.6% after 10000 cycles. The present study provides insights into the design of MXene interlayers for the fabrication of highly robust and stable supercapacitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.