Abstract

We report an oxide nanowire growth phenomenon that morphologically resembles the vapor-liquid-solid process but with a fundamentally different mechanism. This is demonstrated with the high-temperature NiAl oxidation that results in the unidirectional γ-Al2O3 growth with a NiO nanoparticle at the nanowire tip. The NiO nanoparticle surface serves as the active site for dissociative O2 adsorption that produces an inward flux of atomic oxygen toward the γ-Al2O3/NiAl interface for γ-Al2O3 growth by reacting with bottom-up diffusing Al3+ cations. The nanowire lengthening follows the parabolic kinetics with the upward lattice diffusion of Al3+ cations in the γ-Al2O3 nanowires as the rate-limiting factor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.