Abstract

Human voices can be used to authenticate the identity of the speaker, but the automatic speaker verification (ASV) systems are vulnerable to voice spoofing attacks, such as impersonation, replay, text-to-speech, and voice conversion. Recently, researchers developed anti-spoofing techniques to improve the reliability of ASV systems against spoofing attacks. However, most methods encounter difficulties in detecting unknown attacks in practical use, which often have different statistical distributions from known attacks. Especially, the fast development of synthetic voice spoofing algorithms is generating increasingly powerful attacks, putting the ASV systems at risk of unseen attacks. In this work, we propose an anti-spoofing system to detect unknown synthetic voice spoofing attacks (i.e., text-to-speech or voice conversion) using one-class learning. The key idea is to compact the bona fide speech representation and inject an angular margin to separate the spoofing attacks in the embedding space. Without resorting to any data augmentation methods, our proposed system achieves an equal error rate (EER) of 2.19% on the evaluation set of ASVspoof 2019 Challenge logical access scenario, outperforming all existing single systems (i.e., those without model ensemble).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.