Abstract
One of the most important challenges for machine learning community is to develop efficient classifiers which are able to cope with data streams, especially with the presence of the so-called concept drift. This phenomenon is responsible for the change of classification task characteristics, and poses a challenge for the learning model to adapt itself to the current state of the environment. So there is a strong belief that one-class classification is a promising research direction for data stream analysis--it can be used for binary classification without an access to counterexamples, decomposing a multi-class data stream, outlier detection or novel class recognition. This paper reports a novel modification of weighted one-class support vector machine, adapted to the non-stationary streaming data analysis. Our proposition can deal with the gradual concept drift, as the introduced one-class classifier model can adapt its decision boundary to new, incoming data and additionally employs a forgetting mechanism which boosts the ability of the classifier to follow the model changes. In this work, we propose several different strategies for incremental learning and forgetting, and additionally we evaluate them on the basis of several real data streams. Obtained results confirmed the usability of proposed classifier to the problem of data stream classification with the presence of concept drift. Additionally, implemented forgetting mechanism assures the limited memory consumption, because only quite new and valuable examples should be memorized.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.