Abstract

Background and aimsAlterations to one-carbon metabolism, especially elevated plasma homocysteine (Hcy), have been suggested to be both a cause and a consequence of the metabolic syndrome (MS). A deeper understanding of the role of other one-carbon metabolites in MS, including s-adenosylmethionine (SAM), s-adenosylhomocysteine (SAH), and the methylation capacity index (SAM:SAH ratio) is required. Methods and results118 men and women with MS-risk factors were included in this cross-sectional study and cardiometabolic outcomes along with markers of one-carbon metabolism, including fasting plasma SAM, SAH, Hcy and vitamin B12 concentrations, were analysed. Multiple linear regression models were also used to examine the association between plasma one-carbon metabolites and cardiometabolic health features.We found that fasting plasma concentrations of Hcy, SAM and SAH were all positively correlated with markers of adiposity, including BMI (increase in BMI per 1-SD increase in one-carbon metabolite: 0.92 kg/m2 95% CI (0.28; 1.56), p = 0.005; 0.81 (0.15; 1.47), p = 0.02; 0.67 (−0.01; 1.36), p = 0.05, respectively). Hcy, but not SAM, SAH or SAM:SAH ratio was associated with BMI and body fat percentage after mutual adjustments. SAM concentrations were associated with higher fasting insulin (9.5% 95% CI (0.3; 19.5) per SD increase in SAM, p = 0.04), HOMA-IR (10.8% (0.8; 21.9), p = 0.03) and TNF-α (11.8% (5.0; 19.0), p < 0.001). ConclusionWe found little evidence for associations between SAM:SAH ratio and cardiometabolic variables, but higher plasma concentrations of SAM, SAH and Hcy are related to an overall higher risk of metabolic dysfunctions.The studies were registered at www.clinicaltrials.gov (NCT01719913 &NCT01731366).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call