Abstract

Design and training principles have been proposed and tested for an artificial neural network based on metal-oxide thin-film nanostructures possessing bipolar resistive switching (memristive) effect. Experimental electronic circuit of neural network is implemented as a double-layer perceptron with a weight matrix composed of 32 memristive devices. The network training algorithm takes into account technological variations of the parameters of memristive devices. Despite the limited size of weight matrix the developed neural network model is scalable and capable of solving nonlinear classification problems. The learning and functionality of the network are demonstrated by using its computer model for the classification of activity propagation directions in simulated neuronal culture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.