Abstract

Many complex natural or synthetic products are analysed either by the GC–MS (gas chromatography–mass spectrometry) or HPLC–DAD (high performance liquid chromatography–diode-array detector) technique, each of which produces a one-dimensional fingerprint for a given sample. This may be used for classification of different batches of a product. GC–MS and HPLC–DAD analyses of complex, similar substances represented by the three common types of the TCM (traditional Chinese medicine), Rhizoma Curcumae were analysed in the form of one- and two-dimensional matrices firstly with the use of PCA (Principal component analysis), which showed a reasonable separation of the samples for each technique. However, the separation patterns were rather different for each analytical method, and PCA of the combined data matrix showed improved discrimination of the three types of object; close associations between the GC–MS and HPLC–DAD variables were observed. LDA (linear discriminant analysis), BP-ANN (back propagation-artificial neural networks) and LS-SVM (least squares-support vector machine) chemometrics methods were then applied to classify the training and prediction sets. For one-dimensional matrices, all training models indicated that several samples would be misclassified; the same was observed for each prediction set. However, by comparison, in the analysis of the combined matrix, all models gave 100% classification with the training set, and the LS-SVM calibration also produced a 100% result for prediction, with the BP-ANN calibration closely behind. This has important implications for comparing complex substances such as the TCMs because clearly the one-dimensional data matrices alone produce inferior results for training and prediction as compared to the combined data matrix models. Thus, product samples may be misclassified with the use of the one-dimensional data because of insufficient information.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.