Abstract
With the help of the Boussinesq perturbation expansion, a new basic equation describing the long, small-amplitude, unidirectional wave motion in shallow water with surface tension is derived to fourth order, namely a higher-order Korteweg–de Vries (KdV) equation. The procedure for deriving this equation assumes that the relation between the small parameter \(\alpha \), which measures the ratio of wave amplitude to undisturbed fluid depth, and the small parameter \(\beta \), which measures the square of the ratio of fluid depth to wave length, is taken in the form \(\beta = 0(\alpha ) = \varepsilon \), where \(\varepsilon \) is a small, dimensionless parameter which is the order of the amplitude of the motion. Hirota’s bilinear method is used to investigate one- and two-soliton solutions for this new higher-order KdV equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.