Abstract

One- and two-phonon Raman scattering from intrinsic and boron as well as phosphorus doped hydrogenated nanocrystalline silicon films prepared by plasma enhanced chemical vapor deposition technique were investigated. With regard to one-phonon Raman measurements of intrinsic films, redshifts attending by asymmetrical broadening of one-phonon transverse optical (TO) mode with diminishing mean dimension of Si nanocrystals can be ascribed to incorporating effects of phonon confinement and tensile strain. Photoluminescence behavior of these intrinsic specimens can be interpreted by a consistent way when recombination of quantum-confined excitons in Si nanocrystals is assumed. As to one-phonon Raman signals of doped nc-Si:H materials, besides joint effects of phonon confinement and tensile strain, additional redshifts accompanying with asymmetrical broadening of one-phonon TO band with increasing doping level can be assigned to carrier effect and disorder from doping. With diminishing average size of Si nanocrystals or increasing dopants, the decay of two-phonon Raman amplitudes of intrinsic and doped samples can be attributed to disorder. Raman experiments indicate that all the energies of the two-phonon TO branches are different from twice the energies of the one-phonon TO active bands, which reveal that the two-phonon TO modes do not come from the Raman active phonons at wavevector k=0. The peak shift of two-phonon transverse optical (2TO) modes relates to phonon confinement and disorder. Negligible peak shift in TO (2TO) modes of intrinsic and doped films on temperature indicates that the interface strain in nc-Si:H/c-Si can be ignored.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call