Abstract

Contacts between black phosphorene (BP) and metal electrodes are critical components of BP-based devices and can dramatically affect device performance. In this paper, we adopted first-principles calculations to explore binding energies, electronic structures, spatial potential distribution of monolayer BP–Ni interfaces in surface contact and edge contact types, and used density functional theoretical coupled with nonequilibrium Green’s function method to investigate the electrical transport properties for transport systems of monolayer BP with Ni electrodes. Our calculated results indicate that contact type between monolayer BP and metal Ni electrodes may much affect the transport properties of monolayer BP–Ni devices. Interfacial interaction between Ni and monolayer BP in edge contact type is stronger than that in surface contact type. The potential distributions indicate that edge contact type is more beneficial for reducing contact resistance of monolayer BP–Ni contacts and conducive to improve the performance of BP–Ni electrode device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.