Abstract

BackgroundLabdane-related diterpenoids form the largest group among the diterpenes. They fulfill important functions in primary metabolism as essential plant growth hormones and are known to function in secondary metabolism as, for example, phytoalexins. The biosynthesis of labdane-related diterpenes is mediated by the action of class II and class I diterpene synthases. Although terpene synthases have been well investigated in poplar, little is known about diterpene formation in this woody perennial plant species.ResultsThe recently sequenced genome of Populus trichocarpa possesses two putative copalyl diphosphate synthase genes (CPS, class II) and two putative kaurene synthase genes (KS, class I), which most likely arose through a genome duplication and a recent tandem gene duplication, respectively. We showed that the CPS-like gene PtTPS17 encodes an ent-copalyl diphosphate synthase (ent-CPS), while the protein encoded by the putative CPS gene PtTPS18 showed no enzymatic activity. The putative kaurene synthases PtTPS19 and PtTPS20 both accepted ent-copalyl diphosphate (ent-CPP) as substrate. However, despite their high sequence similarity, they produced different diterpene products. While PtTPS19 formed exclusively ent-kaurene, PtTPS20 generated mainly the diterpene alcohol, 16α-hydroxy-ent-kaurane. Using homology-based structure modeling and site-directed mutagenesis, we demonstrated that one amino acid residue determines the different product specificity of PtTPS19 and PtTPS20. A reciprocal exchange of methionine 607 and threonine 607 in the active sites of PtTPS19 and PtTPS20, respectively, led to a complete interconversion of the enzyme product profiles. Gene expression analysis revealed that the diterpene synthase genes characterized showed organ-specific expression with the highest abundance of PtTPS17 and PtTPS20 transcripts in poplar roots.ConclusionsThe poplar diterpene synthases PtTPS17, PtTPS19, and PtTPS20 contribute to the production of ent-kaurene and 16α-hydroxy-ent-kaurane in poplar. While ent-kaurene most likely serves as the universal precursor for gibberellins, the function of 16α-hydroxy-ent-kaurane in poplar is not known yet. However, the high expression levels of PtTPS20 and PtTPS17 in poplar roots may indicate an important function of 16α-hydroxy-ent-kaurane in secondary metabolism in this plant organ.Electronic supplementary materialThe online version of this article (doi:10.1186/s12870-015-0647-6) contains supplementary material, which is available to authorized users.

Highlights

  • Labdane-related diterpenoids form the largest group among the diterpenes

  • A blast analysis revealed that Potri.002G052100 and Potri.005G210300 had high similarity to copalyl diphosphate (CPP) synthase (CPS) genes from other plants while Potri.0 08G082400 and Potri.008G082700 were most similar to kaurene synthase (KS) genes

  • We were able to amplify Potri.002G05210, Potri.005G210300, Potri.008G082400, and Potri.008G08 2700 from a cDNA pool attained from leaf buds, leaves, stems, and roots of Populus trichocarpa and the open reading frames obtained were designated PtTPS17, PtTPS18, PtTPS19, and PtTPS20, respectively

Read more

Summary

Introduction

Labdane-related diterpenoids form the largest group among the diterpenes They fulfill important functions in primary metabolism as essential plant growth hormones and are known to function in secondary metabolism as, for example, phytoalexins. Terpene synthases (TPSs), the key enzymes of terpene metabolism, accept these precursors as substrates and convert them into monoterpene (C10), sesquiterpene (C15), or diterpene (C20) products, usually olefins and alcohols Due to their high volatility, many monoterpenes and sesquiterpenes are main constituents of vegetative or floral scents thereby playing important roles in plant-insect interactions or intra- and inter-plant communication [2, 3]. Rice (Oryza sativa) has a large number of diterpenoid phytoalexins possessing antifungal activities [6] and in maize the diterpenoid kauralexins were shown to be involved in antiherbivore and antifungal defense [7] Apart from this important function in plant defense, some diterpenoids are essential for plants. Ent-kaurene, for example, is the precursor for the gibberellins, which represent an important group of plant hormones involved in various physiological processes (recently reviewed in [8])

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call