Abstract

We investigated frequency tunability of a microfluidic-based antenna using on-demand manipulation of a gallium-based liquid metal alloy. The fluidic antenna was fabricated by polydimethylsiloxane (PDMS) and filled with the gallium-based liquid metal alloy (Galinstan ® ). It is composed of a digital number “7”-shaped feedline, and a square-shaped and a digital number “6”-shaped patterns, which are all implemented with the liquid metal. The gallium-based liquid metal was adhered to the channel surface due to its viscous oxide layer originating from the gallium oxide forming when it exposed to the air environment. We treated the liquid metal with hydrochloric acid solution to remove the oxide layer on the surface resulting in easy movement of the liquid metal in the channel, as the liquid metal surface has been transformed to be non-wettable. We controlled the physical length of the liquid metal slug filled in feedline with an applied air pressure, resulting in tuning the resonant frequency ranging from 2.2 GHz to 9.3 GHz. The fluidic antenna properties using the liquid metal’s electrical conductivity and mobility were characterized by measuring the return loss (S11), and also simulated with CST Microwave Studio.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call