Abstract

Theranostic nanoprobes can potentially integrate imaging and therapeutic capabilities into a single platform, offering a new personalized cancer diagnostic tool. However, there is a growing concern that their clinical application is not safe, particularly due to metal-containing elements, such as the gadolinium used in magnetic resonance imaging (MRI). We demonstrate for the first time that the photothermal melting of the DNA duplex helix was a reliable and versatile strategy that enables the on-demand degradation of the gadolinium-containing MRI reporter gene from polydopamine (PDA)-based theranostic nanoprobes. The combination of chemotherapy (doxorubicin) and photothermal therapy, which leads to the enhanced anti-tumor effect. In vivo MRI tracking reveals that renal filtration was able to rapidly clear the free gadolinium-containing MRI reporter from the mice body. This results in a decrease in the long-term toxic effect of theranostic MRI nanoprobes. Our findings may pave the way to address toxicity issues of the theranostic nanoprobes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call