Abstract
Continuous vision loss due to vasoproliferative eye disease still represents an unsolved issue despite anti-vascular endothelial growth factor (VEGF) therapy. The impact of signal transducer and activator of transcription 3 (STAT3) signaling on retinal angiogenesis and its potential use as a therapeutic target remain controversial. In vitro, oncostatin M (OSM), as a strong STAT3 activator, possesses robust proangiogenic activity. This study investigated to what extent the proangiogenic effects of OSM translate to the in vivo setting of vasoproliferative eye disease. The in vitro effect of OSM on endothelial cells was investigated in the spheroid sprouting assay and through RNA sequencing. The mouse model for oxygen-induced retinopathy (OIR) was used to evaluate the impact of OSM in vivo. Signaling patterns were measured by western blot and retinal cryosections. Primary Müller cell cultures were used to evaluate the effect of OSM on the Müller cell secretome. Murine retinal vascular endothelial cells were isolated from OIR retinas using fluorescence-activated cell sorting (FACS) and were used for RNA sequencing. Although OSM induced pro-angiogenic responses in vitro, in the OIR model intravitreal injection of OSM reduced retinal neovascularization by 65.2% and vaso-obliteration by 45.5% in Müller cells. Injecting OSM into the vitreous activated the STAT3 signaling pathway in multiple retinal cell types, including Müller cells. In vitro, OSM treatment increased CXCL10 secretion. RNA sequencing of sorted vascular endothelial cells at OIR P17 following OSM treatment indicated downregulation of angiogenesis- and mitosis-associated genes. In vivo, OSM reveals a beneficial angiomodulatory effect by activating Müller cells and changing their secretome. The data highlight contradictions between cytokine-induced effects in vitro and in vivo depending on the cell types mediating the effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.