Abstract

Neovascularization of the atherosclerotic plaque is responsible for its weakening and consequently for the complications of vascular disease. Macrophages are a source of growth factors that can modulate angiogenesis. In this study, we analyzed the effect of oncostatin M (OSM) on angiogenesis, as it could be involved in the development of atherosclerosis. The effect of OSM was compared with those of leukemia inhibitory factor (LIF) and interleukin-6 (IL-6). On human dermal microvasculature endothelial cells (HMEC-1s), OSM (22.5 to 112.5 pmol/L) induced a dose-dependent increase in cell proliferation greater than that induced by the classic angiogenic factors vascular endothelial growth factor (VEGF; 543 pmol/L) and basic fibroblast growth factor (bFGF; 1.1 nmol/L). LIF (19 to 475 pmol/L) induced only a 30% increase in cell proliferation, and IL-6 had no effect. Furthermore, in a modified Boyden-chamber model, OSM, LIF, and IL-6 were chemoattractant for HMEC-1s. In a tridimensional gel of fibrin, OSM increased tube formation and tube length, which were already noticeable by day 3. LIF and IL-6 induced a weaker effect that was only obvious by day 10. The angiogenic effect of OSM was also demonstrated in vivo in a rabbit corneal model: OSM was more potent than LIF, the length of the neovessels being longer with OSM than with LIF, whereas IL-6 was without effect. We tested factors that could be involved in the proliferative effect of OSM on HMEC-1s. OSM induced only a slight increase in the urokinase receptor and a 60% increase in VEGF secretion, whereas it does not modify IL-8 secretion or bFGF levels. The effect of OSM seems to depend on endothelial cell origin and cell species: OSM (up to 112.5 pmol/L) did not induce human umbilical vein endothelial cell proliferation and even had a small inhibitory effect (17%) on calf pulmonary artery endothelial cells. In conclusion, OSM induces an angiogenic effect on capillary endothelial cells, which could be, at least in part, implicated in pathological processes such as atherosclerosis or tumor growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.