Abstract

Inflammatory bowel diseases (IBD), including Crohn’s disease (CD) and ulcerative colitis (UC), are complex chronic inflammatory conditions of the gastrointestinal tract that are driven by perturbed cytokine pathways. Anti-tumor necrosis factor-α (TNF) antibodies are a mainstay therapeutic approach for IBD. However, up to 40% of patients are non-responsive to anti-TNF agents, and identifying alternative therapeutic targets is a priority. Here we show that expression of the cytokine Oncostatin M (OSM) and its receptor (OSMR) is increased in the inflamed intestine of IBD patients compared to healthy controls, and correlates closely with histopathological disease severity. OSMR is expressed in non-hematopoietic, non-epithelial intestinal stromal cells, which respond to OSM by producing various pro-inflammatory molecules including interleukin-6 (IL-6), the leukocyte adhesion factor ICAM-1, and chemokines that attract neutrophils, monocytes, and T cells. In an animal model of anti-TNF resistant intestinal inflammation, genetic deletion or pharmacological blockade of OSM significantly attenuates colitis. Furthermore, high pre-treatment OSM expression is strongly associated with failure of anti-TNF therapy based on analysis of over 200 IBD patients, including two cohorts from phase 3 clinical trials of infliximab and golimumab. OSM is thus a potential biomarker and therapeutic target for IBD, with particular relevance for anti-TNF resistant patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.