Abstract

BackgroundOvarian cancer is one of the most lethal types of female malignancy. Although most patients are initially responsive to platinum-based chemotherapy, almost all develop recurrent chemoresistant tumors and succumb to their diseases. Elucidating the pathogenesis underlying drug resistance is fundamental to the development of new therapeutics, leading to improved clinical outcomes in these patients.Methods and FindingsWe compared the proteomes of paired primary and recurrent post-chemotherapy ovarian high-grade serous carcinomas from nine ovarian cancer patients using CIEF/Nano-RPLC coupled with ESI-Tandem MS. As compared to their primary tumors, more than half of the recurrent tumors expressed higher levels of several proteins including CP, FN1, SYK, CD97, AIF1, WNK1, SERPINA3, APOD, URP2, STAT5B and RELA (NF-κB p65), which were also validated by quantitative RT-PCR. Based on shRNA screening for the upregulated genes in in vitro carboplatin-resistant cells, we found that simultaneous knockdown of RELA and STAT5B was most effective in sensitizing tumor cells for carboplatin treatment. Similarly, the NF-κB inhibitor, BMS-345541, and the STAT5 inhibitor, Dasatinib, significantly enhanced cell sensitivity to carboplatin. Moreover, both RELA and STAT5 are known to bind to the promoter region of Bcl-X, regulating its promoter activity. In this regard, augmented Bcl-xL expression was detected in carboplatin-resistant cells. Combined ectopic expression of RELA and STAT5B enhanced Bcl-xL promoter activity while treatment with BMS-345541 and Dasatinib decreased it. Chromatin immunoprecipitation of the Bcl-X promoter region using a STAT5 antibody showed induction of RELA and STAT5 DNA-binding segments both in naïve cells treated with a high concentration of carboplatin as well as in carboplatin-resistant cells.ConclusionsProteomic analysis identified RELA and STAT5 as two major proteins associated with carboplatin resistance in ovarian tumors. Our results further showed that NF-κB and STAT5 inhibitor could sensitize carboplatin-resistant cells and suggest that such inhibitors can be used to benefit patients with carboplatin-resistant recurrent ovarian cancer.

Highlights

  • Ovarian cancer is the most lethal gynecological malignancy in the United States with an estimated 21,550 new cases and 14,600 deaths in 2009 [1]

  • Proteomic analysis identified RELA and STAT5 as two major proteins associated with carboplatin resistance in ovarian tumors

  • We have reported that the expression levels of Nac1, Rsf-1 (HBXAP), fatty acid synthase and annexin A11 were significantly higher in recurrent, high-grade ovarian serous carcinoma specimens after chemotherapy and, more importantly, expression of these genes played a causal role in conferring drug resistance in vitro [3], [4], [5], [6], [7], [8]

Read more

Summary

Introduction

Ovarian cancer is the most lethal gynecological malignancy in the United States with an estimated 21,550 new cases and 14,600 deaths in 2009 [1]. High-grade serous carcinoma is highly malignant with a 5-year survival rate of less than 30%. Despite initial responsiveness to combined carboplatin and paclitaxel chemotherapy, most patients develop chemoresistant tumors and succumb to the recurrent disease [2]. Elucidating the pathogenesis of chemoresistance is fundamental to the development of new therapeutics to overcome drug resistance in ovarian cancer patients. Most patients are initially responsive to platinum-based chemotherapy, almost all develop recurrent chemoresistant tumors and succumb to their diseases. Elucidating the pathogenesis underlying drug resistance is fundamental to the development of new therapeutics, leading to improved clinical outcomes in these patients

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call