Abstract

The unbiased cytotoxicity and blood-brain barrier (BBB) impermeability render common chemotherapeutics nonviable for treating glioblastoma (GBM) patients. Although rigosertib (RGS), a RAS effector protein inhibitor, has shown low toxicity to healthy cells and high efficacy toward various cancer cells by inactivating PI3K-Akt, it hardly overcomes the BBB barricade. Here, we report that RGS loaded in apolipoprotein E derived peptide (ApoE)-targeted chimaeric polymersomes (ApoE-CP) is safe and highly potent against human GBM in vivo. ApoE-CP exhibited stable loading of RGS in its lumen, giving RGS nanoformulations (ApoE-CP-RGS) with a size of 60 nm and reduction-triggered drug release behavior. Notably, ApoE-CP-RGS induction markedly enhanced the G2/M cell cycle arrest and inhibitory effect in U-87 MG glioblastoma cells compared with the nontargeted CP-RGS and free RGS. The therapeutic outcomes in orthotopic U-87 MG GBM models demonstrated that ApoE-CP-RGS brought about effective GBM inhibition, greatly prolonged survival time, and depleted adverse effects. Rigosertib formulated in ApoE-targeted chimaeric polymersomes has emerged as a novel, highly specific, efficacious, and nontoxic treatment for glioblastoma.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.