Abstract

PurposeTreatment of malignant pleural mesothelioma (MPM) with Ranpirnase (Onconase) results in disruption of protein translation and cell apoptosis. We hypothesize that Onconase acts via down regulation of nuclear factor kappa B (NFKβ) by specific microRNAs (miRNA) and that interference of this pathway could have implications for MPM resistance to chemotherapy.Experimental DesignThree immortalized MPM cell lines (H2959, H2373, and H2591) were exposed to Onconase at 0–20 µg/mL. Cell counts were measured at 48 and 72 hours. Gene expression in miRNA-enriched RNA was validated by RT-PCR. The functional implications of miRNA expression were evaluated by transfecting miRNA mimics or inhibitors into MPM cell lines, and performing Matrigel™ invasion, cell proliferation, soft agar colony formation, and scratch closure assays. Effects on NFKβ expression and downstream targets including ABC transporters, BCL-xl, and IAP were assessed by RT-PCR and Western Blotting.ResultsTreatment with 20µg/mL of Onconase significantly decreased cell count and invasion. Hsa-miR-17* was significantly upregulated and hsa-miR-30c significantly down-regulated by Onconase treatment in all cell lines. Forced expression of hsa-miR-17* mimic and hsa-miR-30c inhibitor each significantly decreased functional activity of Onconase in all assays. NFKB1(p50) expression and downstream targets were also decreased with Onconase treatment as well as with forced expression miRNA mimic and inhibitors.ConclusionsOnconase treatment caused a significant decrease in cell proliferation, invasion, and in expression of certain miRNAs. Recapitulation of the resultant miRNA expression pattern with hsa-miR-17* mimic and hsa-miR-30c inhibitor resulted in downregulation of NFKB1 and reduced malignant behavior in functional assays. Thus, Onconase likely exerts its anti-tumor effect through these miRNAs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.