Abstract
Aberrant activation of the receptor tyrosine kinase-mediated RAS signaling cascade is the primary driver of embryonal rhabdomyosarcoma (ERMS), a pediatric cancer characterized by a block in myogenic differentiation. To investigate the cellular function of activated RAS signaling in regulating the growth and differentiation of ERMS cells, we genetically ablated activated RAS oncogenes with high-efficiency genome-editing technology. Knockout of NRAS in CRISPR-inducible ERMS xenograft models resulted in near-complete tumor regression through a combination of cell death and myogenic differentiation. Utilizing this strategy for therapeutic RAS targeting in ERMS, we developed a recombinant oncolytic myxoma virus (MYXV) engineered with CRISPR/Cas9 gene-editing capability. Treatment of pre-clinical human ERMS tumor xenografts with an NRAS-targeting version of this MYXV significantly reduced tumor growth and increased overall survival. Our data suggest that targeted gene-editing cancer therapies have promising translational applications, especially with improvements to gene-targeting specificity and oncolytic vector technology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.