Abstract

Oncolytic viruses (OV) are a class of antitumor agents that selectively kill tumor cells while sparing normal cells. Oncolytic herpes simplex virus (oHSV) has been investigated in clinical trials for patients with the malignant brain tumor glioblastoma for more than a decade. These clinical studies have shown the safety of oHSV administration to the human brain, however, therapeutic efficacy of oHSV as a single treatment remains unsatisfactory. Factors that could hamper the anti-glioblastoma efficacy of oHSV include: attenuated potency of oHSV due to deletion or mutation of viral genes involved in virulence, restricting viral replication and spread within the tumor; suboptimal oHSV delivery associated with intratumoral injection; virus infection-induced inflammatory and cellular immune responses which could inhibit oHSV replication and promote its clearance; lack of effective incorporation of oHSV into standard-of-care, and poor knowledge about the ability of oHSV to target glioblastoma stem cells (GSCs). In an attempt to address these issues, recent research efforts have been directed at: (1) design of new engineered viruses to enhance potency, (2) better understanding of the role of the cellular immunity elicited by oHSV infection of tumors, (3) combinatorial strategies with different antitumor agents with a mechanistic rationale, (4) “armed” viruses expressing therapeutic transgenes, (5) use of GSC-derived models in oHSV evaluation, and (6) combinations of these. In this review, we will describe the current status of oHSV clinical trials for glioblastoma, and discuss recent research advances and future directions toward successful oHSV-based therapy of glioblastoma.

Highlights

  • Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults (Wen and Kesari, 2008)

  • FUTURE DIRECTION oHSV-based treatment of GBM proceeds through a dynamic, complex process that involves virus infection

  • these variable aspects of oHSV therapy provide a variety of opportunities for interventions to improve overall efficacy

Read more

Summary

Introduction

Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults (Wen and Kesari, 2008). The current standard treatment for GBM consists of surgical resection followed by combination of radiotherapy and chemotherapy with the alkylating agent temozolomide (TMZ). Despite this multimodality approach, tumors inevitably recur for which therapeutic options are limited. Median survival of GBM patients is only 14.6 months (Stupp et al, 2005) and this remarkably poor outcome has not improved substantially over the last three decades. Therapeutic challenges include the invasive and infiltrative nature of GBM growth that makes surgical resection always incomplete, and the resistance of tumor cells to the conventional cytocidal therapies. There is an urgent need to develop novel, effective therapies for this devastating malignancy

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.