Abstract

Tumor targeting and intratumoral virus spreading are key features for successful oncolytic virotherapy. VCN-11 is a novel oncolytic adenovirus, genetically modified to express hyaluronidase (PH20) and display an albumin-binding domain (ABD) on the hexon. ABD allows the virus to self-coat with albumin when entering the bloodstream and evade neutralizing antibodies (NAbs). Here, we validate VCN-11 mechanism of action and characterize its toxicity.VCN-11 replication, hyaluronidase activity and binding to human albumin to evade NAbs was evaluated. Toxicity and efficacy of VCN-11 were assessed in mice and hamsters. Tumor targeting, and antitumor activity was analyzed in the presence of NAbs in several tumor models.VCN-11 induced 450 times more cytotoxicity in tumor cells than in normal cells. VCN-11 hyaluronidase production was confirmed by measuring PH20 activity in vitro and in virus-infected tumor areas in vivo. VCN-11 evaded NAbs from different sources and tumor targeting was demonstrated in the presence of high levels of NAbs in vivo, whereas the control virus without ABD was neutralized. VCN-11 showed a low toxicity profile in athymic nude mice and Syrian hamsters, allowing treatments with high doses and fractionated administrations without major toxicities (up to 1.2x1011vp/mouse and 7.5x1011vp/hamster). Fractionated intravenous administrations improved circulation kinetics and tumor targeting. VCN-11 antitumor efficacy was demonstrated in the presence of NAbs against Ad5 and itself.Oncolytic adenovirus VCN-11 disrupts tumor matrix and displays antitumor effects even in the presence of NAbs. These features make VCN-11 a safe promising candidate to test re-administration in clinical trials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.