Abstract

ObjectivesLong non-coding RNAs (lncRNAs) are a group of noncoding RNAs with length larger than 200 nucleotides. LncRNAs have limited or no protein-coding capacity because of lack of obvious open reading frame. An increasing number of researches have shown that lncRNAs participate in the complex regulation network of cancer and play an important role in tumourigenesis and progression such as proliferation, migration and invasion. LncRNA FOXD2 adjacent opposite strand RNA 1 (FOXD2-AS1), located on chromosome 1p33 and with a transcript length of 2527 nucleotides, is a novel cancer-related lncRNA. FOXD2-AS1 was recently found to exhibit aberrant expression in various malignancies, including gastric, lung, bladder, colorectal, nasopharyngeal, esophageal, hepatocellular, thyroid and skin cancer, and its deregulation might be related to survival and prognosis of cancer patients. Pertinent to clinical practice, FOXD2-AS1 might act as a feasible biomarker or therapeutic target in human cancers. In this paper, we made a summary on the current findings concerning the biological functions and molecular mechanisms of FOXD2-AS1 in tumor progression. Materials and methodsIn this paper, we summarized and figured out recent studies about the expression and molecular biological mechanisms of FOXD2-AS1 in tumor progression. Existing relevant studies were obtained through a systematic search from PubMed, Embase, BioMedNet, GEO database and Cochrane Library. ResultsFOXD2-AS1 was a valuable tumor-associated lncRNA. Its expression level was up-regulation in various malignancies, including gastric, lung, bladder, colorectal, nasopharyngeal, esophageal, hepatocellular, thyroid and skin cancer. In addition, the aberrant expressions of FOXD2-AS1 have shown to contribute to proliferation, migration and invasion of cancer cells, and its deregulation is related to carcinogensis, overall survival, disease free survival, prognosis and tumor progression. ConclusionsLncRNA FOXD2-AS1 is an oncogene and probably represents a feasible biomarker or therapeutic target in human cancers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call