Abstract

Proper regulation of gene-expression relies on specific protein–protein interactions between a myriad of epigenetic regulators. As such, mutation of genes encoding epigenetic regulators often drive cancer and developmental disorders. Additional sex combs-like protein 1 (ASXL1) is a key example, where mutations frequently drive haematological cancers and can cause developmental disorders. It has been reported that nonsense mutations in ASXL1 promote an interaction with BRD4, another central epigenetic regulator. Here we provide a molecular mechanism for the BRD4-ASXL1 interaction, demonstrating that a motif near to common truncation breakpoints of ASXL1 contains an epitope that binds the ET domain within BRD4. Binding-studies show that this interaction is analogous to common ET-binding modes of BRD4-interactors, and that all three ASX-like protein orthologs (ASXL1–3) contain a functional ET domain-binding epitope. Crucially, we observe that BRD4-ASXL1 binding is markedly increased in the prevalent ASXL1Y591X truncation that maintains the BRD4-binding epitope, relative to full-length ASXL1 or truncated proteins that delete the epitope. Together, these results show that ASXL1 truncation enhances BRD4 recruitment to transcriptional complexes via its ET domain, which could misdirect regulatory activity of either BRD4 or ASXL1 and may inform potential therapeutic interventions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.