Abstract

Alterations in the ErbB family of growth factor receptors, their signaling components, and mutational activation of Ras proteins are major contributors to malignant transformation. Recently, mutant Ras was shown to be capable of activating ErbB receptors in a ligand-independent manner. Furthermore, it was observed that nucleolin, a transcriptional regulator and ribosome biogenesis factor, can bind both K-Ras and the cytoplasmic tail of ErbB receptors to enhance ErbB receptor activation. However, the functional significance of these interactions to cancer pathogenesis has not been probed. Here, we show that endogenous nucleolin interacts simultaneously in vivo with endogenous Ras and ErbB1 (EGFR) in cancer cells. The C-terminal 212 amino acids of nucleolin were determined to be sufficient to interact with ErbB1 and all Ras protein isoforms (H-, N-, and K-Ras). Nucleolin partially colocalizes with Ras at the plasma membrane. Moreover, activated but not wild-type Ras facilitates nucleolin interaction with ErbB1 and stabilizes ErbB1 receptor levels. Most importantly, these three oncogenes synergistically facilitate anchorage-independent cell growth in vitro and tumor growth in vivo. Our findings suggest strategies to target nucleolin as a general approach to inhibiting ErbB- and Ras-driven cancers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.