Abstract

p53 deficiency and Myc dysregulation are frequently associated with cancer. However, the molecular mechanisms linking these two major oncogenic events are poorly understood. Using an osteosarcoma model caused by p53 loss, we have recently shown that Runx3 aberrantly upregulates Myc via mR1, a Runx consensus site in the Myc promoter. Here, we focus on thymic lymphoma, a major tumour type caused by germline p53 deletion in mice, and examine whether the oncogenic Runx–Myc axis plays a notable role in the development of p53-deficient lymphoma. Mice lacking p53 specifically in thymocytes (LP mice) mostly succumbed to thymic lymphoma. Runx1 and Myc were upregulated in LP mouse lymphoma compared with the normal thymus. Depletion of Runx1 or Myc prolonged the lifespan of LP mice and suppressed lymphoma development. In lymphoma cells isolated from LP mice, knockdown of Runx1 led to Myc suppression, weakening their tumour forming ability in immunocompromised mice. The mR1 locus was enriched by both Runx1 and H3K27ac, an active chromatin marker. LP mice with mutated mR1 had a longer lifespan and a lower incidence of lymphoma. Treatment with AI-10-104, a Runx inhibitor, improved the survival of LP mice. These results suggest that Myc upregulation by Runx1 is a key event in p53-deficient thymic lymphoma development and provide a clinical rationale for targeting the Runx family in p53-deficient malignancies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call