Abstract

RNA-binding proteins (RBPs) are aberrantly expressed in various diseases, including glioma. In the present study, the role and mechanism of RBPs in glioma were investigated. Differentially expressed genes (DEGs) in glioma were screened from public databases and overlapping genes between DEGs and RBPs were selected in a bioinformatics analysis to identify the hub gene. Next, evaluation of expression, survival analysis and cell experiments were performed to examine the impact of the hub gene on glioma. Through bioinformatics analysis, G protein nucleolar 2 (GNL2), programmed cell death 11 (PDCD11) and ribosomal protein S6 (RPS6) were identified as potential biomarkers in glioma prognosis and GNL2 was chosen as the hub gene for further investigation. GNL2 was increased in glioma tissues and related to poor survival outcomes. Cell experiments revealed that GNL2 knockdown inhibited glioma cell growth, migration and invasion. In addition, GNL2 was found to affect the overall protein synthesis of ribosomal protein L11 in glioma cells. In conclusion, GNL2, PDCD11 and RPS6 may serve as potential biomarkers in glioma prognosis. Importantly, GNL2 acts as an oncogene in glioma and it enhances protein synthesis to promote the development of brain glioma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call