Abstract

The objective of this study was to investigate gene expression levels of oncogenic relevant human defensins and their impact on proliferation rates of 29 cell lines derived from main types of different tumor origins. Differential gene expression analysis of human defensins was performed by real-time PCR experiments. The proliferation rate of tumor cells that had been cultivated in the absence or presence of biologically active peptides was analyzed with a lactate dehydrogenase assay kit. At least one member of the defensin family was expressed in each tumor cell line, whereby α-defensin (DEFA1), DEFA2, or DEFA3 transcripts could be ubiquitously detected. Cell lines of neural origin (glioma, neuroblastoma, and small-cell lung carcinoma) expressed far less human β-defensins (hBDs) in comparison to other tumor types. The expression level of a specific defensin in various cell lines could vary by more than five orders of magnitude. Compensatory mechanisms on the expression levels of the different defensins could not be strictly observed. Only in 3 out of 29 tumor cell lines the proliferation rate was affected after defensin stimulation. The variable appearance of defensins, as well as the cell line-restricted functional activity, argues for the integration of defensins in complex cellular and molecular networks that tolerate rather flexible expression patterns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.