Abstract

The recurrent germline mutation HOXB13 p.(Gly84Glu) (G84E) has recently been identified as a risk factor for prostate cancer. In a recent study, we have performed full sequencing of the HOXB13 gene in 462 Portuguese prostate cancer patients with early-onset and/or familial/hereditary disease, and identified two novel missense mutations, p.(Ala128Asp) (A128D) and p.(Phe240Leu) (F240L), that were predicted to be damaging to protein function. In the present work we aimed to investigate the potential oncogenic role of these mutations, comparing to that of the recurrent G84E mutation and wild-type HOXB13. We induced site-directed mutagenesis in a HOXB13 expression vector and established in vitro cell models of prostate carcinogenesis with stable overexpression of either the wild-type or the mutated HOXB13 variants. By performing in vitro assays we observed that, while the wild-type promotes proliferation, also observed with the F240L variant along with a decrease in apoptosis, the A128D mutation decreases apoptosis and promotes anchorage independent growth. No phenotypic impact was observed for the G84E mutation in the cell line model used. Our data show that specific HOXB13 mutations are involved in the acquisition of different cancer-associated capabilities and further support an oncogenic role for HOXB13 in prostate carcinogenesis.

Highlights

  • A hereditary component is estimated to be present in 5-10% of all prostate cancers [1,2]

  • HOXB13 was identified as a site-specific susceptibility gene for prostate cancer when Ewing and his colleagues found a recurrent germline mutation (G84E, rs138213197) in men of European descent, which co-segregated with the disease in affected families [4]

  • Establishment of the in vitro models to study the role of HOXB13 mutations in prostate carcinogenesis using the PNT2 cell line

Read more

Summary

Introduction

A hereditary component is estimated to be present in 5-10% of all prostate cancers [1,2]. HOXB13 was identified as a site-specific susceptibility gene for prostate cancer when Ewing and his colleagues found a recurrent germline mutation (G84E, rs138213197) in men of European descent, which co-segregated with the disease in affected families [4]. This association between the HOXB13 G84E variant and an increased prostate cancer risk has been confirmed by other groups [5,6,7,8,9,10,11,12,13]. Other HOXB13 variants have been found in different ethnic groups, suggesting allelic heterogeneity in different populations [4,16,17]

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call