Abstract

Although, various types of pharmaceuticals have been developed for cervical carcinomas, treatment with these drugs often results in a number of undesirable side effects, toxicity and multidrug resistance. Here, we aimed at modifying the genetic profiling of cancer cells by silencing the expression of the epidermal growth factor receptor (EGFR) gene. We have synthesized two kinds of RAFT-made, biocompatible, and cationic polymers for the encapsulation of silencing RNA (siRNA). This vector has a dual capability: it contains a cationic segment to complex with the siRNA and an omega-end modified with an oxaborole group via thiol-ene click chemistry that responds to the acidic tumor microenvironment. This structural innovation enables this macromolecule to interact with multiple polyplexes and release the siRNA in a mild acidic environment. A strategy that has shown enhanced gene silencing without elevating the cytotoxicity of the system, as determined by Western blot analysis. The success of this approach has afforded further interest in utilizing boron-carbohydrate interaction in the development of nonviral vectors for gene therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call