Abstract

Oncogenic lesions are surprisingly common in morphologically and functionally normal human skin, however, the cellular and molecular mechanisms that suppress their cancer-driving potential to maintain tissue homeostasis are unknown. By employing assays for direct and quantitative assessment of cell fate choices in vivo, we show that oncogenic activation of PI3K/AKT, the most commonly activated oncogenic pathway in cancer, promotes differentiation and cell-cycle exit of epidermal progenitors. As a result, oncogenic PI3K/AKT activated epidermis exhibits growth disadvantage even though its cells are more proliferative. To uncover the underlying mechanism behind oncogene-induced differentiation, we conduct a series of genetic screens in vivo, and identify an AKT substrate SH3RF1 as a specific promoter of epidermal differentiation that has no effect on proliferation. Our study provides evidence for a direct, cell autonomous mechanism that can suppresses progenitor cell renewal and block clonal expansion of epidermal cells bearing a common and activating mutation in Pik3ca.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call