Abstract
The frequency degree of freedom of optical photons has been recently explored for efficient quantum information processing. Significant reduction in hardware resources and enhancement of quantum functions can be expected by leveraging the large number of frequency modes. Here, we develope an integrated photonic platform for the generation and parallel processing of quantum frequency combs (QFCs). Cavity-enhanced parametric down-conversion with Sagnac configuration is implemented to generate QFCs with identical spectral distributions. On-chip quantum interference of different frequency modes is simultaneously realized with the same photonic circuit. High interference visibility is maintained across all frequency modes with the identical circuit setting. This enables the on-chip reconfiguration of QFCs. By deterministically separating QFCs without spectral filtering, we further demonstrate high-dimensional Hong-Ou-Mandel effect. Our work provides the critical step for the efficient implementation of quantum information processing with integrated photonics using the frequency degree of freedom.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.