Abstract

Lithium-niobate-on-insulator (LNOI) is emerging as a promising platform for integrated quantum photonic technologies because of its high second-order optical nonlinearity, compact footprint, and low propagation loss in a broad wavelength range. Importantly, LNOI allows for creating electro-optically tunable circuits that can be efficiently operated at cryogenic temperature. Their integration with superconducting nanowire single-photon detectors (SNSPDS) paves the way for realizing scalable photonic devices for fast manipulation and detection of quantum states of light. Here we report the monolithic integration of these two key components in a low loss (0.2 dB/cm) LNOI waveguide network. As an experimental showcase of our technology, we demonstrate the combined operation of an electrically tunable Mach Zehnder interferometer–an essential building block for the realization of reconfigurable optical networks-and two waveguide-integrated SNSPDs at its outputs. We show static reconfigurability of our system with a bias-drift free operation over a time of 12 hours, as well as high-speed modulation at frequencies up to 1 GHz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.