Abstract

PurposeDespite its well-founded criticism and lack of proper justification under core saturation conditions, the T-equivalent transformer model (Steinmetz scheme) is obviously championing in the literature. This educational paper aims to explain in a simple manner the limitations of the T-model of a low-frequency transformer and critically analyses some attempts to improve it.Design/methodology/approachUsing a simplified examination of magnetic fluxes in the core and windings and using the modeling in ATPDraw, it is shown that transient transformer models with the indivisible leakage inductance allow circumventing the drawbacks of the T-model.FindingsThe authors show the absence of valid grounds for subdividing the leakage inductance of a transformer between its primary and secondary windings. The connection between the use of individual leakage inductances and inaccurate prediction of inrush current peaks is outlined as an important example.Practical implicationsThe presented models can be used either as independent tools or serve as a reference for subsequent developments.Social implicationsOver generations, the habitual transformer T-equivalent is widely used by engineers and Electromagnetic Transients Program experts with no attention to its inadequacy under core saturation conditions. Having studied typical winding configurations, the authors have shown that neither of them has any relation to the T-equivalent.Originality/valueThis educational paper will contribute to the correct understanding of the transients occurring in a transformer under abnormal conditions such as inrush current or ferroresonance events, as well as during an out-of-phase synchronization of step-up generator transformers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call