Abstract

Onboard liquid cooling of electronic devices is demonstrated with liquid delivered externally to the point of heat removal through a conformal encapsulation. The encapsulation creates a flat microgap above the integrated circuit (IC) and delivers a uniform inlet coolant flow over the device. The coolant is Novec™ 7200, and the electronics are simulated with a resistance heater on a 1:1 scale. Thermal performance is demonstrated at power densities of ∼1 kW/cm3 in the microgap. Parameters investigated are pressure drop, average device temperature, heat transfer coefficient, and coefficient of performance (COP). Nusselt numbers for gap sizes of 0.25, 0.5, and 0.75 mm are reduced to a dimensionless correlation. With low coolant inlet subcooling, two-phase heat transfer is seen at all mass flows. Device temperatures reach 95 °C for power dissipation of 50–80 W (0.67–1.08 kW/cm3) depending on coolant flow for a gap of 0.5 mm. Coefficients of performance of ∼100 to 70,000 are determined via measured pressure drop and demonstrate a low pumping penalty at the device level within the range of power and coolant flow considered. The encapsulation with microgap flow boiling provides a means for use of higher power central processing unit and graphics processing unit devices and thereby enables higher computing performance, for example, in embedded airborne computers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.