Abstract
Predictor polynomials are often used in linear prediction methods mainly for extracting properties of physical systems which are described by time series. The aforementioned properties are associated with a few zeros of large polynomials and for this reason the zero locations of those polynomials must be analyzed. We present a linear algebra approach for determining the zero locations of predictor polynomials, which enables us to generalize some early results obtained by Kumaresan in the signal analysis field. We also present an analysis of zero locations for time series having multiple zeros. © 1997 by John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.