Abstract
We address a metric version of Zariskiâs multiplicity conjecture at infinity that says that two complex algebraic affine sets which are bi-Lipschitz homeomorphic at infinity must have the same degree. More specifically, we prove that the degree is a bi-Lipschitz invariant at infinity when the bi-Lipschitz homeomorphism has Lipschitz constants close to 1. In particular, we have that a family of complex algebraic sets bi-Lipschitz equisingular at infinity has constant degree. Moreover, we prove that if two polynomials are weakly rugose equivalent at infinity, then they have the same degree. In particular, we obtain that if two polynomials are rugose equivalent at infinity or bi-Lipschitz contact equivalent at infinity or bi-Lipschitz right-left equivalent at infinity, then they have the same degree.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.