Abstract

Precise synthesis of all-inorganic lead halide perovskite nanowire heterostructures and superlattices with designable modulation of chemical compositions is essential for tailoring their optoelectronic properties. Nevertheless, controllable synthesis of perovskite nanostructure heterostructures remains challenging and underexplored to date. Here, we report a rational strategy for wafer-scale synthesis of one-dimensional periodic CsPbCl3/CsPbI3 superlattices. We show that the highly parallel array of halide perovskite nanowires can be prepared roughly as horizontally guided growth on an M-plane sapphire. A periodic patterning of the sapphire substrate enables position-selective ion exchange to obtain highly periodic CsPbCl3/CsPbI3 nanowire superlattices. This patterning is further confirmed by micro-photoluminescence investigations, which show that two separate band-edge emission peaks appear at the interface of a CsPbCl3/CsPbI3 heterojunction. Additionally, compared with the pure CsPbCl3 nanowires, photodetectors fabricated using these periodic heterostructure nanowires exhibit superior photoelectric performance, namely, high ION/IOFF ratio (104), higher responsivity (49 A/W), and higher detectivity (1.51 × 1013 Jones). Moreover, a spatially resolved visible image sensor based on periodic nanowire superlattices is demonstrated with good imaging capability, suggesting promising application prospects in future photoelectronic imaging systems. All these results based on the periodic CsPbCl3/CsPbI3 nanowire superlattices provides an attractive material platform for integrated perovskite devices and circuits.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.