Abstract

This paper discusses some of the technical problems related to a Weylian geometrical interpretation of the Schrodinger and Klein-Gordon equations proposed by E. Santamato. Solutions to these technical problems are proposed. A general prescription for finding out the interdependence between a particle's effective mass and Weyl's scalar curvature is presented which leads to the fundamental equation of geometric quantum mechanics, $$m(R)\frac{{dm(R)}}{{dR}} = \frac{{\hbar ^2 }}{{c^2 }}$$ The Dirac equation is rigorously derived within this formulation, and further problems to be solved are proposed in the conclusion. The main one is based on obtaining the relationship between Feynman's path integral quantization method, among others, and the methods of geometric quantum mechanics. The solution of this problem will be a crucial test for this theory that attempts to “geometrize” quantum mechanics rather than the conventional approach in the past of quantizing geometry. A numerical prediction of this theory yields a 3×10−35 eV correction to the ground-state energy of the hydrogen atom.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.