Abstract

The generalized weighted mean operator \({\mathbf{M}^{g}_{w}}\) is given by $$[\mathbf{M}^{g}_{w}f](x) = g^{-1} \left( \frac{1}{W(x)} \int \limits_{0}^{x}w(t)g(f(t))\,{\rm d}t \right),$$ with $$W(x) = \int \limits_{0}^{x} w(s) {\rm d}s, \quad {\rm for} \, x \in (0, + \infty),$$ where w is a positive measurable function on (0, + ∞) and g is a real continuous strictly monotone function with its inverse g−1. We give some sufficient conditions on weights u, v on (0, + ∞) for which there exists a positive constant C such that the weighted strong type (p, q) inequality $$\left( \int \limits_{0}^{\infty} u(x) \Bigl( [\mathbf{M}^{g}_{w}f](x) \Bigr)^{q} {\rm d}x \right)^{1 \over q} \leq C \left( \int \limits_{0}^{\infty}v(x)f(x)^{p} {\rm d}x \right)^{1 \over p}$$ holds for every measurable non-negative function f, where the positive reals p,q satisfy certain restrictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.