Abstract
In a recent paper [12] Muckenhoupt and Wheeden have established necessary and sufficient conditions for the validity of norm inequalities of the form ‖ |x|αTƒ ‖q ≦ C‖ |x|αƒ ‖p, where Tƒ denotes a Calderón and Zygmund singular integral of ƒ or a fractional integral with variable kernel. The purpose of the present paper is to prove, by somewhat different methods, similar inequalities for more general weight functions.In what follows, for p ≧ 1, p′ is the exponent conjugate to p, given by l/p + l/p′ = 1. Ω will always denote a locally integrable function on Rn which is homogeneous of degree 0, Ω∼ will denote a measurable function on Rn × Rn such that for each x ∈ Rn, Ω∼(x, .) is locally integrable and homogeneous of degree 0.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.